ESc 101: Fundamentals of Computing

Lecture 13

Jan 28, 2010

Algorithms

- An algorithm is a stepwise description of operations to solve a problem.
- It is usually in a natural language, not a computer language.
- It also includes the description of the data structures to be used.
- The first step for creating a program to solve a problem should be to design a suitable algorithm for it.

Algorithms and Functions

- Functions provide a very convenient way of implementing algorithms.
- Using functions, we can often mimic the steps of algorithms closely.

Example: Adding Numbers Algorithm

1. Read a number.
2. Read another number.
3. Add the two numbers.
4. Output the result.

Example: Adding Numbers main Program

```
main()
{
    char number1[SIZE]; /* stores first number */
    char number2[SIZE]; /* stores second number */
    char number3[SIZE]; /* stores the result */
    /* Read first number */
    if (read_number(number1) == 0) /* error */
        return;
    /* Read second number */
    if (read_number(number2) == 0) /* error */
        return;
    /* Add the two numbers */
    if (add_numbers(number1,number2,number3) == 0) /* error */
        return;
    output_number(number3); /* output result */

\section*{Example: Generating Prime Numbers Algorithm}

Input: number \(\mathrm{n} / *\) First n primes to be generated \(* /\)
1. Read number n
2. For every number between 2 and n do: output if it is prime.

\section*{Example: Generating Prime Numbers Program}
```

main()
{
int n; /* upper limit */
int i;
printf(''Input n: '');
scanf(%d, \&n); /* read n */
/* Output all prime numbers <= n */
printf(''Prime numbers <= n are:\n'');
for (i = 2; i <= n; i++)
if (is_prime(i))
printf(',%%d ',, i);
}

```

\section*{Example: Generating Prime Numbers Program}
```

int is_prime(int m)
{
int i;
for (i = 2; i < m; i++)
if (m % i == 0) /* m is composite */
return 0;

```
    return 1; /* m is prime */
\}

\section*{Example: Computing GCD Algorithm}
1. Read numbers \(n\) and \(m\).
2. Compute GCD of n and m .
3. Output the gcd.

\section*{Example: Computing GCD Program}
```

main()
{
int n; /* first number */
int m; /* second number */
/* Read n and m */
printf(''Input two numbers:'');
scanf(,'%d,',, \&n);
scanf(',%d',', \&m);
/* Find gcd */
t = compute_gcd(n, m);
/* Output gcd */
printf(','The GCD is: %d\n'', t);
}

```

\section*{Computing GCD: First Method}

Strating from n , and subtracting one each time, find the largest number that divides both n and m .

\section*{Corresponding Program}
```

int compute_gcd(int n, int m)
{
int t; /* stores GCD */
for (t = n; 1; t--)
if ((n % t == 0) \&\& (m % t == 0)) /* both are divisible
*/
return t;
/* No need to worry about other cases,
* because when t = 1, it will divide both n and m
*/
}

```

\section*{Computing GCD: Eucind's Method}
1. Make n the larger number, swapping if required.
2. if \(m\) divides \(n\), gcd is \(m\).
3. Otherwise, replace \(n\) by \(n(\bmod m)\).
4. Go to 1 .

\section*{Corresponding Program}
```

int compute_gcd(int n, int m)
{
int t; /* needed for swapping */
for (; 1;) {
if (n < m) { /* swap */
t = m;
m = n;
n = t;
}
if (n % m == 0) /* m is gcd */
return m;
else
n = n % m;
}
}

```

\section*{Two Algorithms for GCD}
- The first algorithm for computing ged goes through all numbers between n and 1 when the gcd of n and m is 1 .
- The second algorithm, on the other hand, proceeds much faster - in a single iteration, the value of n goes from being larger than m to being smaller than \(m\).
- Hence, the second algorithm is faster than the first one - which can be observed by running the two algorithms on large inputs.
- Thinking carefully about the problem and writing down the algorithm before writing a program is important for this reason too: We may be able to discover a faster way of solving the problem.```

