
ESc 101: Fundamentals of Computing

Lecture 13

Jan 28, 2010

Lecture 13 () ESc 101 Jan 28, 2010 1 / 16



Algorithms

An algorithm is a stepwise description of operations to solve a
problem.

It is usually in a natural language, not a computer language.

It also includes the description of the data structures to be used.

The first step for creating a program to solve a problem should be to
design a suitable algorithm for it.

Lecture 13 () ESc 101 Jan 28, 2010 3 / 16



Algorithms and Functions

Functions provide a very convenient way of implementing algorithms.

Using functions, we can often mimic the steps of algorithms closely.

Lecture 13 () ESc 101 Jan 28, 2010 4 / 16



Example: Adding Numbers Algorithm

1. Read a number.

2. Read another number.

3. Add the two numbers.

4. Output the result.

Lecture 13 () ESc 101 Jan 28, 2010 5 / 16



Example: Adding Numbers main Program

main()

{

char number1[SIZE]; /* stores first number */

char number2[SIZE]; /* stores second number */

char number3[SIZE]; /* stores the result */

/* Read first number */

if (read number(number1) == 0) /* error */

return;

/* Read second number */

if (read number(number2) == 0) /* error */

return;

/* Add the two numbers */

if (add_numbers(number1,number2,number3) == 0) /* error */

return;

output_number(number3); /* output result */

}
Lecture 13 () ESc 101 Jan 28, 2010 6 / 16



Example: Generating Prime Numbers
Algorithm

Input: number n /* First n primes to be generated */

1. Read number n

2. For every number between 2 and n do:

output if it is prime.

Lecture 13 () ESc 101 Jan 28, 2010 7 / 16



Example: Generating Prime Numbers Program

main()

{

int n; /* upper limit */

int i;

printf(’’Input n: ’’);

scanf(%d, &n); /* read n */

/* Output all prime numbers <= n */

printf(’’Prime numbers <= n are:\n’’);

for (i = 2; i <= n; i++)

if (is prime(i))

printf(’’%d ’’, i);

}

Lecture 13 () ESc 101 Jan 28, 2010 8 / 16



Example: Generating Prime Numbers Program

int is prime(int m)

{

int i;

for (i = 2; i < m; i++)

if (m % i == 0) /* m is composite */

return 0;

return 1; /* m is prime */

}

Lecture 13 () ESc 101 Jan 28, 2010 9 / 16



Example: Computing GCD Algorithm

1. Read numbers n and m.

2. Compute GCD of n and m.

3. Output the gcd.

Lecture 13 () ESc 101 Jan 28, 2010 10 / 16



Example: Computing GCD Program

main()

{

int n; /* first number */

int m; /* second number */

/* Read n and m */

printf(’’Input two numbers:’’);

scanf(’’%d’’, &n);

scanf(’’%d’’, &m);

/* Find gcd */

t = compute gcd(n, m);

/* Output gcd */

printf(’’The GCD is: %d\n’’, t);

}

Lecture 13 () ESc 101 Jan 28, 2010 11 / 16



Computing GCD: First Method

Strating from n, and subtracting one each time,

find the largest number that divides both n and m.

Lecture 13 () ESc 101 Jan 28, 2010 12 / 16



Corresponding Program

int compute gcd(int n, int m)

{

int t; /* stores GCD */

for (t = n; 1; t--)

if ((n % t == 0) && (m % t == 0)) /* both are divisible by t

*/

return t;

/* No need to worry about other cases,

* because when t = 1, it will divide both n and m

*/

}

Lecture 13 () ESc 101 Jan 28, 2010 13 / 16



Computing GCD: Eucind’s Method

1. Make n the larger number, swapping if required.

2. if m divides n, gcd is m.

3. Otherwise, replace n by n (mod m).

4. Go to 1.

Lecture 13 () ESc 101 Jan 28, 2010 14 / 16



Corresponding Program

int compute gcd(int n, int m)

{

int t; /* needed for swapping */

for (; 1; ) {

if (n < m) { /* swap */

t = m;

m = n;

n = t;

}

if (n % m == 0) /* m is gcd */

return m;

else

n = n % m;

}

}

Lecture 13 () ESc 101 Jan 28, 2010 15 / 16



Two Algorithms for GCD

The first algorithm for computing gcd goes through all numbers
between n and 1 when the gcd of n and m is 1.

The second algorithm, on the other hand, proceeds much faster – in a
single iteration, the value of n goes from being larger than m to being
smaller than m.

Hence, the second algorithm is faster than the first one – which can
be observed by running the two algorithms on large inputs.

Thinking carefully about the problem and writing down the algorithm
before writing a program is important for this reason too: We may be
able to discover a faster way of solving the problem.

Lecture 13 () ESc 101 Jan 28, 2010 16 / 16


	Functions and Algorithms

